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ABSTRACT
Viscous and the magnetic force acting on the armature of a high speed solenoid valve 
(SV) during its closure movement were identified numerically using a novel compu-
tational method. The numerical solutions were compared to the analytical ones. The 
derivation steps of the analytical formulas were presented. The convergence of the 
numerical solution was shown in figures. The deviation between the numerically and 
analytically obtained forces was listed in tables. The distribution of the calculation 
error was presented in figures by means of the magnitude of the magnetic flux density 
and the viscous stress. 
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INTRODUCTION

SVs are very widely set in the automotive in-
dustry. Also the domestic washing machines and 
the dishwashers use SVs to control water entry 
into the machine. They can be used for a wide 
array of industrial applications, including general 
on-off control, calibration and test stands, pilot 
plant control loops and process control systems. 
There are lots of reports regarding finite-element 
approaches for example [2, 19] and simulation 
models [13] of SVs as well as investigation of 
temperature distribution and thermal deforma-
tions inside the [1]. Also effects like the estimation 
of the inductive power caused by the pulse width 
modulation of the coil current and its influence 
on the time dependent temperature distribution 
in the armature of a SV were recently reported 
by in [7]. In [19] the author presented a research 
of key parameters influencing the driving electro-
magnetic force of a SV. The driving force causes 
the movement of the SV armature and decreases 
the axial magnetic gap. In conventional linear so-
lenoids the armature slides during its movement 
on the inner surface of the sleeve (see Fig. 1). The 
sleeve is usually made of a paramagnetic material 
e.g. an aluminum alloy. The objective of the us-

age of a paramagnetic material is the insertion of 
the second magnetic gap in the magnetic circuit. 
This gap is called the radial magnetic gap. In most 
studies on SVs the thickness of the radial gap is 
kept constant independent from the circumfer-
ential angle. In other words researchers take an 
assumption that the armature is placed concentri-
cally in the sleeve. This assumption implies the 
homogeneously distribution of radial magnetic 
forces over the armature circumference. Because 
of e.g. manufacturing imperfections the armature 
is in fact positioned eccentrically in the sleeve. In 
this case the distribution of radial magnetic forces 
over the armature circumference is not homoge-
neous and the resulting radial magnetic force at-
tracts the armature toward the inner side of the 
sleeve. Thus, an increased transverse force acting 
on the armature exists and causes friction between 
the armature and the sleeve. Friction with these 
components degrades the performance of the so-
lenoid and causes wear. The investigation of the 
transverse magnetic force has been rarely report-
ed. However, one can find some inventions hav-
ing an objective to minimize the transverse force 
that occurs from armature eccentricity. In [3] the 
inventor described an idea of a reduction of the 
transverse force by the introduction of segmenta-
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tion in the armature member. Another inventor [6] 
had an idea of minimizing the transverse force by 
an insertion of small radial slots in the armature 
side surface. The objective of the current study 
is the estimation of the transverse magnetic force 
acting on the armature with the cylindrical shape 
which is positioned eccentrically in the sleeve. 
For this purpose a sophisticated computational 
method was developed and published in [23] and 
[9]. This method considers a mathematical way 
of transforming the geometry of the radial air 
gap into rectangular computation domain. In this 
computation domain the Laplace’s differential 
equation can be solved for finding the distribu-
tion of the magnetic scalar potential and finally 
the transversal magnetic force. Exactly the same 
mathematical algorithm can be used for solving 
of the Poisson’s differential equation having an 
objective of the estimation of the distribution of 
the oil velocity in the area between the armature 
and the sleeve (see Fig. 1). For a known velocity 
distribution the viscous force acting on the arma-
ture during its axial movement can be computed.

DEFINITION OF THE PROBLEM

The object of the investigation is the determi-
nation of forces acting on the armature of a SV, 
which simplified layout was shown in Figure 1. 
The armature is not positioned concentrically in 
the sleeve but it is shifted toward the sleeve by the 
distance e. This distance is called the armature ec-
centricity. The sleeve is made of a paramagnetic 
material. The room between the armature and the 
sleeve is filled with oil having the temperature T. 
The armature moves in the z-direction with the 
constant velocity u0(T).

During this movement acts on the armature 
the viscose friction force which can be estimated 
by the integration of the viscous stress tensor over 
the armature side surface [16]:

(1)

The function dA in (1) is the vectorial surface 
element of the armature side surface. For the 
viscous stress tensor 𝕊 yields [10]:

(2)

The parameter η in (2) is the dynamic viscos-
ity, u is the velocity of oil and  is the unit matrix. 
The oil velocity needed in (2) can be estimated by 

solving the stationery Navier-Stokes differential 
equation [20]:

(3)

The vector function f in (3) described the 
mass forces, ρ is the oil density, p is the pressure 
and υ is the kinematic viscosity of the oil. In the 
investigated SV the mass forces were neglected 
and it was assumed that the oil density and the 
pressure drop are constant. Furthermore, the ar-
mature of the SV was approximated with an in-
finite long cylinder. In such of an approximated 
case (3) simplifies to the Poisson’s differential 
equation [12]:

(4)

The constant C in (4) equals:

(5)

The parameter Lh is the axial length of the ar-
mature (see Fig. 1). Because of the taken assump-
tions equation (1) simplifies to:

(6)

where the function τ in (6) is the viscous stress 
vector on the side surface of the armature, for 
which yields:

Fig. 1. Simplified layout of the solenoid valve
(with small graphical re-orderering) [8]
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(7)

Except of the viscous force that acts on the 
armature, also an electromagnetic force, which 
consists of the driving component Fmzez and the 
transversal component Fmxex is present. In the 
considered investigation however only the trans-
versal component is relevant. This component 
can be estimated using the integration [22]:

(8)

The function B in (8) is the magnetic flux 
density in the radial air gap and μ0 is the perme-
ability of the vacuum. In a magneto-static case 
the magnetic field density existing in the domain 
r∈[ρ1, R3] can be represented by the gradient filed 
according to [5]:

(9)

The function ψ is the magnetic scalar poten-
tial of the magnetic field intensity. Because in the 
investigated SV the total drop of magneto-motor-
ic force θ was assumed to consist of the sum of 
drops in the radial and in the axial air gap, the 
equation (9) gets with the use of the Hopkinson’s 
law [15]:

(10)

The parameters G1 and G2 in (10) are the 
magnetic permeances of the axial and the radial 
air gaps and Ψ is the normalized magnetic scalar 
potential. After the use of the Gauß rule [21] the 
divergence of the magnetic field density is equal 
zero and one obtains the Laplace differential 
equation which is a special case of the Poisson’s 
differential equation [14]:

(11)

The permeance of the axial air gap can be 
found using the analytic formula (12) for the 
room between two parallel surfaces [14]:

(12)

The parameter hb in (12) is the length of the 
axial air gap and Ad is the cross section of the ar-
mature. For the permeance of the radial air gap 
yields [22]:

(13)

NUMERICAL MODEL

The equation (4) was solved numerically us-
ing the method of finite differences. The co-ordi-
nate system in each this equation was solved is 
the curvilinear system a, α.

In this co-ordinate system the distance from 
the armature contour (described in the univer-
sal case by the function ζ(φ)) to the inner side of 
the sleeve (described in the universal case by the 
function ζ(φ)+h(φ)) is constant independently 
from the circumferential position φ (see. Fig. 2). 
The function h is here the local thickness of the 
oil film. The transformation from the polar co-
ordinate system  r, φ to the a, α - co-ordinate was 
performed using the relations [9, 23]:

(14)

(15)

Functions h and ζ are restricted to functions 
which allow n being isomorphic and bijective in 
the computation domain. The range of validity 
of the function n is restricted to: 0 ≤ n ≤ 1. The 

Fig. 2. Computational domain of the Laplace’s partial 
differential equation (on the top) and its map in the 

curvilinear coordinate system a, α [9]
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Laplace operator transformed to the a, α - co-ordinate system has been derived in [23]. The derivation 
was performed using a shoal of differential function. It equals:

(16)

where:

(17)

The computation method in the a, α - co-ordinate system is a relatively novel computation method 
[23, 9]. It has this advantage in comparison to the Finite Difference Method (FEM) that regions with 
small magnetic or hydraulic gap in which both magnetic flux density and viscous shear stress are the 
highest can be automatically mesh more densely than regions with big gaps. This method of discretiz-
ing allows an incensement of computation precision with a simultaneous reduction of the mesh node 
numbers.The Laplace operator (16) can also be derived using its generalized definition that allows the 
operations on functions defined on surfaces in Euclidean space. This operator of a scalar function in 
any curvilinear co-ordinate system is called the Laplace-Beltrami operator. In the considered case this 
operator simplifies to [4, 17, 18]:

(18)

where: g is the contravariant metric tensors which can be found using [4]:

(19)

X in (19) is the position vector:

(20)

The derivatives of (20) are:

(21)

(22)
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where:

(23)

(24)

Setting (21) and (22) into (19) yields:

(25)

(26)

(27)

(28)

The determinant of the metric tensor (19) equals:

(29)

Setting (25)-(29) into (18) and performing differentiations yields and Laplace operator identical to (16). 
The full derivation using this method has been recently presented in [9]. One of possible ranges of valid-
ity for the variables a, α is 0 ≤ n ≤ 1 and 0 ≤ α ≤ 2π. In the investigated case the location a = 0 indicates 
points on the armature side surface and a = 1 points on the inner side of the sleeve. After having defined 
the Laplace operator the equation (4) has been solved with the boundary conditions:

(30)

(31)

The parameter u0 in (30) is the axial velocity of the armature. In order to estimate the viscous share 
force in (6) one needs the nabla operator [9]:

(32)

and the vectorial side surface of the armature [9]:

(33)

In the case of the armature contour equal ζ = R1 and for the linear transformations n(a) = a and α (φ) = φ one 
obtains: ∂n/∂a = 1, ∂a/∂φ = 1, ∂2α/∂φ2 = 0, ∂ζ/∂φ = 0, ∂2ζ/∂φ2 = 0. Setting these relations into the operator 
(16) results in the simplification:
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(34)

Similar simplifications can be also done for (32) and (33). The local thickness of the oil film can be 
described by the function [23]:

(35)

The differentiation of (35) yields:

(36)

(37)

Exactly the same computation algorithm was used for the estimation of the transversal component 
of the magnetic force. Solved was the equation (11) with the boundary conditions:

(38)

(39)

The only difference in the use of the Laplace operator (34) is the function h. In the magneto-static 
computation the function h represents the circumference dependent radial air gap. For this computation 
the inner radius of the sleeve R2 in equations (35) to (37) must be replaced with the outer radius of the 
sleeve R3.

ANALYTICAL ESTIMATION OF THE VISCOUS AND THE MAGNETIC FORCE 

For e≪R2 the local oil film thickness (35) can be simplified to:

(40)

The parameters δh and εh in (40) are the hydraulic clearance and the relative hydraulic eccentricity 
which are defined as:

(41)

(42)

In the case of thin oil film δh ≪ R1 the derivative of the oil velocity in radial direction is dominant 
over the derivative in the peripherical direction: r -1∂uz/∂φ ≪ ∂uz/∂r so it can be assumed that:

r -1 (43)

Under the assumption (43) the Poisson’s equation (4) simplifies to:

(44)

The boundary conditions of (44) are:

(45)

(46)

2
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The general solution to (44) is:

(47)

Taking into account in (47) the boundary conditions (45), (46) yields the distribution of the oil veloc-
ity in the film:

(48)

The constant C1 in (48) is equal:

(49)

Making use of all previously taking assumptions the stress vector (7) simplifies to:

(50)

The derivation of (47) yields:

(51)

In the case of thin oil film δh ≪ R1 one obtains:

(52)

(53)

Setting (49) in (51) and using (52), (53) one obtains the derivative of the oil velocity in radial 
direction:

(54)

Setting (54), (40) and (5) into (50) yields the distribution of the shear stress on the side surface of 
the armature:

(55)

The vector surface element of the armature side surface can be expressed by:

(56)

The use of (55) and (56) in (6) results after integrating in the boundaries: φ ∈ [0, 2π], z ∈ [0, Lh] in 
the viscous shear force acting on the armature during its axial movement:

(57)

Similar as in the case of the oil film, for δm ≪ R3 the local air gap can be simplified to:

(58)

The parameters δm and εm in (58) are the nominal radial air gap and the relative magnetic eccentricity:

(59)

(60)

For small magnetic eccentricities e ≪ R3 the radial component of the magnetic flux density in the and 
air gap is dominant over its pheripheral component: Bφ ≪ Br [1]. In accordance to the Ampère’s circuital 
law [2] one obtains:

τzx, τzy, 0
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(61)

Setting the relations (61), (58) and (56) into (8) yields:

(62)

where:

(63)

The parameter Lm (62) in is the axial length of the yoke pole (see Fig. 1). The integration (63) and 
the integration of (62) was presented in [8]. For the transversal component of the magnetic force yields:

(64)

CALCULATION RESULTS

The numerical and analytical calculations of 
both fluid mechanical and magneto-static forces 
were performed for the parameters showed in Ta-
ble 1. The calculations of viscous shear force were 
done for two operating temperatures of the SV. 
The calculations were performed for three differ-
ent configurations of the SV indicated in Table 2 
with: P1, P2, P3. The nominal air gap δm = 300 μm 
according to (59) in the case of the configuration 
P1 is identical to the configuration P2. The nomi-
nal hydraulic clearance δh = 10 μm according to 
(59) in the case of the configuration P1 is identi-
cal to the configuration P3. The eccentricity e in 
Table 2 is different for each evaluation point. The 
current eccentricity is a result of an equilibrium 
position of the armature. The equilibrium occurs 
when roughness peaks of the armature stay in 
contact with roughness peaks of the sleeve. The 
pressure existing in this contact is a function of 

the eccentricity and can be calculated using the 
model presented in [11].

The increase of the eccentricity results in 
the increase of the contact pressure. The result-
ing contact force is the reaction to the transversal 
component of the magnetic force. However, the 
presented investigations do not concern the esti-
mation of the armature eccentricity, so the value  
e ought to be considering as a given calculation 
input. The armature cross section Ad (used in 
(12)) is less than the area of the top of the cylin-
der shown in Figure 1. This is due to the fact, that 
the calculation was perfumed for SV in which the 
armature has some axial holes used for the mass 
reduction. An example of such the holes can be 
seen in [6].

In the first computation step the convergence 
of the viscous share force in all evaluation points 
and at both the investigated temperatures was ex-
amined. The computed viscous force depends on 
the number of mesh points in both radial Nr and 
pheriperical direction Np as well as on the number 
of numerical iteration Nν. The numerical iteration 
was run as long as the maximum value of the re-
siduum of the oil velocity Rs(a, α) has converged 
and reached the value smaller than 1E-16 (see 

Table 1. Computation parameters

Parameter Value Unit

R3 6.05 mm

Lm 3 mm

Lh 10 mm

hb 0.4 mm

p1-p2 0.1 MPa

Tmin, Tmax -10, 140 °C

η(Tmin), η(Tmax) 1.022, 0.0058 Ns/m2

uo(Tmin), uo(Tmax) 0.25, 0.50 m/s

θ 600 A

Table 2. Analyzed evaluation points

Evaluation point P1 P2 P3

R1 [mm] 5.75 5.75 5.90

R2 [ mm] 5.76 5.91 5.91

e [mm] 8.53 158.99 8.62

Ad[mm2] 72.71 72.71 78.20
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Fig. 3 lower plot). For this converged velocity 
distribution the complete 2-dimensional conver-
gence matrix Fhz(Nr, Np) have been examined. In 
all evaluation points and at both the investigated 
temperatures the dependence of the viscous share 
force on the number of mesh points in radial di-
rection was much smaller than its dependence in 
pheriperical direction: ∂Fhz/∂Nr ≪ ∂Fhz/∂Np.

An example of the convergence of the vis-
cous share force was shown in the upper plot of 
Figure 3. The force estimated by the analytical 
solution is plotted with the straight line while 
the force obtained by numerical computation in 
plotted with square points. The number of mesh 
points in pheripherical direction was increased 
from ten to ten thousand. In this convergence 
example the number of mesh point in radial di-
rection was equal six. An almost identical con-
vergence line was obtained for natural numbers 
of Nr∈(4, 10). The maximal residual error falls 
below 1E-16 already for Nν = 64. After about Nν 
= 100 the variable max(Rs) has converged.

In the further computation step the conver-
gence of the transversal magnetic force in all 
evaluation points was examined. Also a full mesh 
independace study was performed. In the consid-
ered model there is no temperature dependency 
of the magnetic force. An example of the con-
vergence of the transversal magnetic force was 
shown in Figure 4. In his example the maximal 
residual error falls below 1E-16 for Nν = 92. After 
about Nν = 140 the value max(Rs) has converged.

In Figure 5 percentage error distributions of 
the magnetic flux density and the viscous stress 
between analytical and numerical solutions in 
the evaluation points: P1, P2, P3 was shown. In 
the case of the magnetic flux density the maximal 
value of the percentage error in the evaluation 
point P2 is the biggest. In this evaluation point 
the relative magnetic eccentricity εm according 
to (60) is much higher than in the other evalua-
tion points. In the case of big relative magnetic 
eccentricity the accuracy of the formula (61) is 
getting less. However the percentage error of the 

Fig. 3. Convergence of the viscous share force for the 
evaluation point P3 at Tmin (upper plot) and the course 

of the residual error

Fig. 4. Convergence of the transversal magnetic force 
for the evaluation point P3 (upper plot) and the course 

of the residual error
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resulting transversal component of the magnet-
ic force Fmx stays under 1% in all investigated 
points (see Table 3). 

In the case of the viscous stress, the maximal 
value of the percentage error in the evaluation 
point P2 is also the biggest at both Tmin and Tmax 
(see Fig. 6 and Fig. 7). In this evaluation point the 
hydraulic clearance δh according to (41) is much 

Fig. 5. Percentage error distributions of the magnetic 
flux density and the viscous stress

higher than in the other evaluation points. The per-
centage error of the viscous force Fhz in P2 equals 
about 6.3% for the oil temperature 10 °C. The per-
centage error of the viscous force Fhz in P2 equals 
about about 7.1% for the oil temperature 140 °C. 
In the evaluation points P2 and P3 the percentage 
errors of the viscous force are less than 1%.

CONCLUSIONS

1. The viscous share force at Tmin in the evalua-
tion point P2 is about three times lower than 
in the evaluation points P1 and P3. However, 
this force at Tmax it is about 50% higher than 
in P1 and P3. 

2. The magnetic force in the evaluation point P1 
is the lowest. It reaches its biggest value in the 
evaluation point P2 which it is about 24-times 
higher than in P1. The magnetic force in the 

Fig. 6. Percentage error distributions of the viscous 
stress at Tmin

Table 3. Numerically computed forces and their per-
centage error regarding to analytical calculation

Forces P1 P2 P3

Fhz(Tmin)  [N] 17.8764 5.7805 18.7557

Fhz(Tmax) [N] 0.2175 0.3226 0.2292

Fmx [N] 0.8624 20.9943 2.7871

ϑFhz(Tmin) [%] -0.7757 -6.3472 -0.1364

ϑFhz(Tmax) [%] 0.6457 7.1341 0.5927

ϑFmx [%] 0.7426 0.8402 0.6333
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evaluation point P3 is about 3-times higher 
than in the evaluation point P1.

3. The deviation between numerical computa-
tions and analytical approximations in the case 
of the magnetic force lies under 1% for all the 
evaluation points. In the case of the viscous 
share force stays the error under 1% only in P1 
and P3. For P2 (in each the eccentricity is the 
biggest) the error equals about 7%.
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